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 A simple and effective approach has been developed to synthesize palla-
dium nanosheets that were successfully employed by reducing the Pd salt 
precursor in N,N-dimethylformamide (DMF), cetyltrimethylammonium 
bromide (CTAB), citric acid and using various reducing agents of CO gas 
and tungsten hexacarbonyl (W(CO)6). It indicates to be a novel method for 
the synthesis, providing a cost effective and an efficient route for the Pd 
nanosheets’ synthesis. The prepared Pd nanosheets have been character-
ized by ultraviolet–visible spectroscopy (UV-vis), transmission electron 
microscope (TEM) and X-ray diffraction (XRD). The results showed those 
Pd nanosheets have been obtained with the average edge length of ~20-25 
nm (using CO gas) and around ~20 nm (using W(CO)6). Thus, the method 
using W(CO)6 as a reducing agent could be an alternative the route to use 
CO gas for the synthesis of Pd nanosheets. Since, the synthesized Pd 
nanosheets with highly plasmonic and catalytic properties are potential 
materials for applications in photothermal therapy, biosensor, catalyst and 
so on in the current and in future. 
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1 INTRODUCTION 

For years, nanomaterials have shown substantially 
distinctive properties as compared to bulk materials 
(Rao, 2004; Huang et al., 2013). Properties such as 
magnetic, optical, electronic, catalytic and 
electrocatalytic activities could significantly depend 
on the size and shape of the metal nanoparticles 
(Sun, 2000). Thus, ultrathin noble metal nanosheets 
have recently attracted considerable attentions 
because of their high surface area-to-volume ratio 
and high density unsaturated atoms exposed on the 
surface, which can significantly enhance their 
plasmonic properties and catalytic activities (Huang 

et al., 2010, 2011; Perez-Alonso et al., 2012; 
Saleem et al., 2013; Duan et al., 2014; Yin et al., 
2014; Hong et al., 2016).  

Palladium (Pd) is a key component of many 
catalysts applied in industrial processes and 
commercial devices (Roucoux et al., 2002). 
Therefore, Pd is a flexible catalyst for a large 
number of importantly industrial reactions such as a 
number of important C-C coupling reactions and 
hydrogenation of unsaturated organic compounds 
(Franzén, 2000; Li et al., 2000; Reetz et al., 2000; 
Son et al., 2004; Redjala, 2006; Astruc, 2007; 
Berhault et al., 2007). In addition, Pd nanoparticle 
is also a using material for sensing and hydrogen 
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storage (Tobiška, 2001; Hübert et al., 2011). For 
example, Pd nanowire arrays were found to be very 
active catalysts for ethanol oxidation for direct 
alcohol fuel cells (Xu et al., 2007). Thus, controlling 
the shape of Pd nanostructures is important not only 
in enhancing the catalytic activity but also for other 
applications such as surface-enhanced Raman 
scattering (SERS), optical sensing and hydrogen 
storage for plasmonic sensing (Xiong et al., 2005; 
Li et al., 2006; Langhammer, 2007). Besides, two-
dimensional Pd nanoparticles show ferromagnetic 
properties that differ from those of bulk Pd, which 
has been reported previously (Bouarab et al., 1990; 
Mendoza, 1999; Suzuki, 2000). Moreover, recent 
studies also demonstrated that the Pd nanoplates 
have greater capacity for hydrogen absorption and 
localized surface plasmon resonance (LSPR) peaks 
absorption in the near-infrared region (NIR) for 
biological applications than bulk Pd and spherical 
Pd nanoparticles (Kishore et al., 2005; Xiong, 2005; 
Xiong et al., 2005 ). In this work, a simple approach 
to synthesize the Pd nanosheets was successful 
developed using citric acid, 
cetyltrimethylammonium bromide (CTAB), N,N-
dimethylformamide (DMF) and tungsten 
hexacarbonyl (W(CO)6) as reducing agents for Pd 
precursor (Pd(acac)2). Herein, the Pd nanosheets’ 
synthetic method used here is simple, cost effective, 
performable (easy to be done), uniform in particle 
size, stable and sustainable. Since, it shows that the 
synthesized Pd nanosheets is a promising material 
for applications in the field of catalysis and 
plasmonic (i.e. fuel cells, and sensing, etc.) in the 
recent time and in future. 

2 MATERIALS AND METHODS 

2.1 Materials 

Palladium (II) acetylacetonate (Pd(acac)2, 99%); 
polyvinylpyrrolidone (PVP; Mwt ~ 10.000); 
tungsten hexacarbonyl (W(CO)6; 97%) and N,N-
Dimethylformamide (DMF) were purchased from 
Sigma-Aldrich and Merck. CTAB, acetone, ethanol, 
and citric acid were bought from Acros. CO gas was 
purchased from gas company in Vietnam. All 
solutions were prepared using deionized water from 
a MilliQ system. 

2.2 Methods  

2.2.1 Synthesis of Pd nanosheets 

Palladium nanosheets (Pd NSs) were synthesized by 
a novel and simple method using tungsten 
hexacarbonyl as a reducing agent without using CO 
gas directly. In a typical synthesis, 60 mg of CTAB 
and 30 mg of PVP were dissolved in 10 mL of DMF. 
And then, 16 mg of Pd(acac)2 and citric acid (10 mg) 

were also added to 10 mL of the above DMF 
mixture and stirred for 20 min at room temperature. 
The homogeneous solution above was transferred 
into a 50 mL glass (flask), and 100 mg of W(CO)6 
was quickly added into the flask or using CO gas 
directly as a reducing agent for the reduction of 
Pd(acac)2 in 30 seconds. After that, the solution was 
continuously stirred and heated at 80oC for various 
reaction times of 60 min; 75 min; 90 min; and 120 
min, respectively. Upon temperature and time of 
reaction, the reaction mixture went through a series 
of color changes that included dark, light blue, and 
dark blue, etc. The solution was then centrifuged 
(10,000 rpm; 15 min), washed with acetone to 
remove excess and redispersed in ethanol. The 
average edge lengths of the as-prepared Pd 
nanosheets are ~15-20 nm (using W(CO)6 as a 
reducing agent) and ~20-25 nm (using CO gas 
directly as a reducing agent) for comparison, 
respectively.  

2.2.2 Characterization  

The absorbance spectra of Pd nanosheet solutions 
were examined by UV–vis spectrophotometry (UV-
675; Shimadzu). The phase structure of Pd 
nanosheet was determined by an X-ray 
diffractometer (Rigaku Dmax-B, Japan) with Cu 
Ksource operated at 40 kV and 100 mA. A scan 
rate of 0.05 deg-1 was used for  between 10o and 
80o. The shape and particle size of Pd nanosheets 
were examined by transmission electron microscope 
(TEM) with a Philips Tecnai F20 G2 FEI-TEM 
microscope (accelerating voltage 200 kV). 

3 RESULTS AND DISCUSSIONS 

As shown in Figure 1, the UV-vis spectra of Pd 
nanosheets (Pd NSs) exhibited with the maximum 
absorption peak in the NIR region from 835 nm to 
1050 nm (Figure 1A) and from 718 nm to 932 nm 
(Figure 1B), respectively. Herein, the plasmon 
resonance peaks match with the surface absorption 
of Pd nanosheets (Kooij, 2011). Since, it is 
demonstrated that Pd nanosheets are created in the 
synthesized solution. When the reaction time of the 
Pd nanosheets mixture solution is increased, leading 
to the maximum absorption peaks also gradually 
shifted respective from 835 to 1050 nm and from 
718 to 932 nm (from visible to the NIR region) due 
to the enhanced aspect ratio for the two-dimensional 
anisotropy (Li et al., 2015), respectively (Figure 1). 
However, the reaction time is increased, leading to 
the intensity of absorption peaks decreased 
gradually (Figure 1(A) (b, c) and 1(B) (c, d), 
respectively). This may be due to the solution occurs 
the agglomeration of nanoparticles together, 
resulting in the solution's color decreases gradually. 
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Therefore, the optimal sample with reaction time at 
90 min is chosen to investigate other factors in the 
steps following. Moreover, the synthesized Pd 
nanosheets with reaction time at 90 min using CO 
gas directly as a reducing agent obtained the 
maximum absorption peak ~945 nm (Figure 1(A) 
(b)) were larger than that of Pd nanosheets using 
W(CO)6 as a reducing agent with the absorption 
peak around 932 nm (Figure 1(B) (c)) for 
comparison (Figure 1). Since, the particle size of Pd 
nanosheets using CO gas directly be predicted was 
larger as compared to that of Pd nanosheets using 
W(CO)6 as a reducing agent. 

The presence of free ions in the CTAB, citric acid 
and W(CO)6 or CO gas has greatly accelerated for 
the polyol synthesis of ultrathin Pd nanosheets. 
During the synthesis, the nanoparticles production 
could easily monitor the progress through its color 
changes from black to light blue or dark blue, etc. 
due to a dramatic increase in the reduction rate of Pd 
ions (Pd2+) to form the Pd nanosheet. The absorptive 
intensity of synthesized samples tends to 
proportional increase to the Pd nanosheets’ solution 
color, corresponding to increase the reaction time. It 
demonstrated that the reaction rate of reducing 
agents using CTAB and W(CO)6 significantly 
affects particle size control of synthetic Pd 
nanosheets in the mixture solution. 

 
Fig. 1: UV-vis spectra of Pd nanosheets with various reaction times of (A) Using CO gas directly as a 
reducing agent (a) 60 min, (b) 90 min, and (c) 120 min; and (B) Using W(CO)6 as a reducing agent (a) 

60 min, (b) 75 min, (c) 90 min, and (d) 120 min, respectively 

The XRD pattern of palladium nanosheets is shown 
in Figure 2. Accordingly, the characteristic peaks 
for Pd nanosheets appearing at 2 = 40.9o, 46.9o, and 
68o are respectively represented the {111}, {200}, 
and {220} Bragg reflection. The XRD pattern is also 
compared with the Joint Committee on Powder 

Diffraction Standards (JCPDS) (No. 05-0681), 
which is confirmed the formation of palladium 
nanosheets with cubic (fcc) crystal structure. This is 
consistent with the previously reported results 
(Bankar et al., 2010, Yang et al., 2010, Siddiqi et 
al., 2016). 

 
Fig. 2: XRD pattern of Pd nanosheets at 80oC for 90 min using W(CO)6 as a reducing agent 
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Transmission electron microscopy (TEM) was used 
to observe the morphology and the characterization 
of Pd nanosheets synthesized. Figure 3 shows 
representative TEM images of Pd nanosheets 
sample. From TEM images in Figure 3, most of the 
nanocrystals have shape like as a hexagon profile. It 
is clear that each hexagonal nanosheet consists of 
six regular triangles. The average particle size of the 
Pd nanosheets is measured ~20-25 nm (using CO 
gas directly) (Figure 3(a)) and around 15-20 nm 
(using W(CO)6) – (Figure 3(b-e)), respectively. 

There is no agglomeration of nanosheets may be due 
to the presence of PVP as a capping agent. As shown 
in Figure 3, the particle size of Pd nanosheets using 
W(CO)6 as a reducing agent is round 15-20 nm 
smaller than as compared to Pd nanosheets using 
CO gas directly being ~20-25 nm. Moreover, the 
shape of Pd hexagonal nanosheets obtained in 
Figure 3(d) with reaction time at 90 min and 80oC 
using W(CO)6 as a reducing agent is clearer and 
more uniform than that of other samples for 
comparisons (Figure 3). 

 

 

 
Fig. 3: TEM images of Pd nanosheets (a) Using CO gas directly at 80oC for 90 min and (b-e) Using 
W(CO)6 at 80oC with various reaction times of (b) 60 min, (c) 75 min, (d) 90 min, and (e) 120 min, 

respectively 

(a) (b) 

(c) (d) 

(e) 
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Therefore, the optimal sample with reaction 
condition at 80oC for 90 min using W(CO)6 as a 
reducing agent will be chosen to synthesize Pd 
nanosheets for the following investigations. 

4 CONCLUSIONS 

In this study, a simple and facile approach to the 
synthesis of Pd nanosheets with uniform shape and 
small particle size has been successfully modified 
the synthetic method of Huang et al. (2010). The 
used citric acid, CTAB and CO gas or W(CO)6 were 
found to play important roles in facilitating the 
formation of such nanosheets. It proves to be an eco-
friendly, simple and non-toxic approach when using 
W(CO)6 as a reducing agent for the Pd nanosheets’ 
synthesis. It indicated that synthesized Pd 
nanosheets have uniform, average edge length ~20 
nm. The Pd nanosheets with different average edge 
lengths as well as various reducing agents and 
reaction times show the tunable LSPR properties in 
the NIR region. Therefore, it could be significantly 
interesting in the field of plasmon-enhanced 
catalysis. 
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